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Fermionization transform for certain higher-dimensional quantum spin models
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Proposed is a generalization of Jordan-Wigner transform that allows to exactly fermionize a large family of
quantum spin Hamiltonians in dimensions higher than one. The key steps are to enlarge the Hilbert space of the
original model by adding to it a collection of stand-alone free spins and to use a combination of these auxiliary
operators and the lattice spins to construct a proper fermion representation of the physical Hamiltonian. The
transform is especially useful for lattice spin Hamiltonians, where two-spin interactions of XY type are either
absent or exist only within one-dimensional chains and where the chains are coupled via two-spin interactions
of Ising type, ring-exchange terms, or more general multispin interactions that involve an even number of spin
operators from each chain. Using the proposed fermionization method we provide a simple argument suggest-
ing that a spin Hamiltonian closely related to the ring-exchange model proposed by Paramekanti et al., [Phys.
Rev. B 66, 054526 (2002)] indeed realizes a spin-liquid state.
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Quantum magnetism is one of the richest areas of re-
search in condensed-matter physics. It is also one of the most
complicated and least understood subjects, primarily because
most quantum magnets represent strongly correlated sys-
tems, which do not necessarily relate to a simple weakly
interacting model that could be studied using perturbative
techniques. The phases and low-energy excitations of quan-
tum magnets are nonuniversal and much is determined by
energetics. Some insight can be obtained using effective-field
theories,! which represent low-energy physics of various
low-temperature magnetic phases but to obtain exact unam-
biguous results is rarely possible.

One-dimensional quantum magnets stand out as a notable
exception to this state of affairs. In many cases, quantum
spin chains can be solved exactly using various nonperturba-
tive methods.? Perhaps, the simplest such example is a chain
of half-integer spins with nearest-neighbor XY interactions,

ie., ﬂXY,ld:_JEn[&;:é—n-;.l+H'C-]- The nature of the ground
state of this spin model can be understood with the help of
Jordan-Wigner® transformation, proposed back in 1928.
Since our Rapid Communication intends to generalize it to
some higher-dimensional models, let us reiterate the key
general ideas, which of course are well known: To solve a
quantum spin Hamiltonian implies to either calculate the par-
tition function or to prove that it is equivalent to a partition
function associated with a different Hamiltonian, which we
understand well, preferably a Hamiltonian expressed in
terms of creation/annihilation operators of some canonical
fermions or bosons. The main difficulty in accomplishing
this task is due to the fact that the spin operators, &,
=(d7, £ i07)/2, are neither fermions nor bosons because they
commute on different sites [6,6”]_ &, and anticommute
on the same site: [6“,6%],=0 (here and below Latin indices,
a,b==). Clearly, no local transformation can “correct” the
anticommutation relation, but Jordan and Wigner3 showed
that there exists a nonlocal transform, now bearing their
names, that accomplishes just that

fi=e 1l 6, and f,=6,11 &, (1

m<n m<n

where fz and fn are creation/annihilation fermion operators,
[fufh]i= 8, Since (6%)°=1, (64)*=0, and 6=26"6,-1,
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the Hamiltonian for the XY-spin chain with nearest-neighbor
interactions becomes that of a one-dimensional Fermi gas in
the language of f fermions Eq. (1). The Heisenberg spin
chain, or a more general XYZ-spin chain with nearest-
neighbor interactions, take the form of interacting fermion
models, which we recognize as a Luttinger liquid. These
mappings are possible because the infinite products or strings
in Eq. (1) collapse into unity operators in all terms of these
Hamiltonians.

It is clear that transform in Eq. (1) itself is independent of
the underlying spin model and it always produces proper
fermion operators out of the original spins. The problem,
however, arises when we use these fermions to describe a
generic spin Hamiltonian, e.g., a higher-dimensional lattice
model* or a spin chain with longer-range interactions: the
string products there generally do not disappear and lead to a
Hamiltonian, which features terms OC]A‘; explin2,,cc ”f;fm]
where C, is a parameterization- and model-dependent set of
sites surrounding a site n. These remaining strings lead in
general to various complicated fermion-gauge-theories with
constraints. In this Rapid Communication, we suggest that
by enlarging the Hilbert space of the original spin model to
include “external” auxiliary states, one can fermionize a
large class of quantum spin models in such a way that both
the gauge/string factors and the new auxiliary operators dis-
appear from the resulting fermion Hamiltonian, which there-
fore takes the familiar form of an interacting fermion model.

First, we present the general idea of this construction.
Consider a lattice spin Hamiltonian, ﬂx[{éﬂ}], expressed in
terms of the Pauli matrices. Add to the model another Hamil-
tonian, H [{#}], expressed in terms of some other operators,
7, that commute with all lattice spins and that belong to a
representation of an algebra, which may or may not be
s5u(2); (in all examples of this Rapid Communication, we
consider auxiliary spin-one-half “particles” only). The full
Hamiltonian reads

H =H {64+ H{#}]. (2)

The main idea here is to use both the original spins and the
operators of the auxiliary algebra to construct fermion opera-
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tors f,,=F [{65},{7}] with the goal of achieving the simplest
possible form of the resulting fermion theory. Furthermore
since the auxiliary algebra is needed only to correct the an-
ticommutation relations, the actual Hamiltonian, H ,, in Eq.
(2) can be assumed to take the simplest possible form, which
quite generally implies that H.=0. Hence the partition func-
tion of the original spin model Z,=Tr exp(—,B’I:lS) is simply
given by Z,=7Z/Z_, where Z _=d . is the dimensionality of the
auxiliary Hilbert space, which is an irrelevant constant inde-
pendent of any parameters of the physical model or tempera-
ture. On the other hand, an unspecified at this stage fermion-
ization transform would lead to the Hamiltonian

A

H=HJ AL +o. (3)

We show that there exist quantum spin models that can be
conveniently fermionized with the help of auxiliary opera-
tors, associated with free stand-alone spins. To provide the
simplest explicit example, consider first a two-leg spin ladder

ﬂXY,ZIQg = > A6+ ()67 (n+1,1) + H.c.] - B&(n,1)}
nl=1,2

+ 2

nm;l #1,

[J.(n,m)6*(n,1,)6*(m,l,) + H.c.]. (4)

Equation (4) describes two XY-spin chains in a magnetic
field, coupled via Ising-type interactions. Let us now intro-
duce an auxiliary free spin-1/2 particle, 7, and define

frm=6"m1) 1 [65(m,1)]3,,

m<n

frm=6*n2) I [6°(m,2)]13,, (5)

m<n

where here and below we identify f‘ = f and f"' = ﬁ =(}?“ )T
Since [6%(n,1)]*=[#*]*=1, the inverse transform is simply
&i(n,1/2)=fi/l(n)Hm<n[6£(m,1/2)]%x/y. The infinite prod-
ucts in Eq. (SB represent the familiar Jordan-Wigner strings
in Eq. (1) that give rise to the desired anticommutation rela-
tions within the chains while the last factor restores proper
fermion algebra for all operators involved, i.e.,

751000 Fi210))s = 84,0,80,1,80, 0y

where n;, € Z labels sites, [;,=1,2=1,] labels legs, and
a,,== distinguishes creation and annihilation operators.
Furthermore, since (n,l)=26%(n,0)6"(n,)-1

=2ﬁ'(n) f,(n)— 1,Vn,l, the fermion representation of Eq. (4)
does not involve the auxiliary 7 operators (cf., Refs. 5 and 6)

Hyyoee=— > ALADF ) n+ 1)+ Hel+ Bfi(n)fi(n)}
=1,

+ 2 T nm)2f () (n) = 1]

X[2f](m)f (m) = 1]+ H.c.}, (6)

where we have omitted an unimportant constant. We see that
transform Eq. (5) maps the spin model onto that of two spe-
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cies of fermions with interactions. Let us note here in passing
that the inclusion of ferromagnetic couplings would translate
in Eq. (6) into an attractive interaction between the fermions,
which is expected to induce pairing correlations at 7— 0. In
particular, the nearest-neighbor intrachain attraction would
select an s-wave pairing while a combination of nearest-
neighbor and zigzag intrachain couplings Eq. (4) are ex-
pected to give rise to a p-wave Cooper pairing’ for fermions
in Eq. (6). The zero-temperature ground state of the latter
model may be related to the simplest possible topological
superconductor.®

Let us now take the next simplest step and consider a
periodically translated two-leg spin ladder Eq. (4) to form a
two-dimensional square lattice consisting of coupled XY-spin
chains. We now define the following fermion operators asso-
ciated with the lattice sites, r=(n,/):

Fi,0) =640 T [675m, 01T (R) 7,

m<n k<l

fn,ty=6"(n,0) I1 [6°m, 01T ()7, (7)

m<n k<l

where, we introduced a spin-1/2 operator for each leg [la-
beled in Eq. (7) by indices k and []. The existence of these
new operators does not disturb the anticommutation relations

within each chain because for any product f*1(n;,l)f*(n,, 1)
the “new” 7-strings square up to an identity operator while
the “old” o strings enforce the usual constraints. However,
the existence of the 7 operators is crucial to produce the right
anticommutation relations for operators in different legs,
e.g., for [, <[,, we obtain

[ (ny, ), f 2, 1)), = 3“1 (ny, 1) 1T [620my,1)]

my<nj
X §2(na,ly) T1 [6%(ma,1o)]
my<<np
< T1 (®)#[#.81,=0. ®)

L <k<l,

Therefore, operators in Eq. (7) are indeed fermions. Per the
same arguments as in the two-leg-spin-ladder case Eq. (4),
we find that its two-dimensional realization can be fermion-
ized via Eq. (7) in such a way that neither Jordan-Wigner
strings, nor 7 operators appear in the Hamiltonian. We sim-

ply can replace 6*(n,l)— f'(n,1), 6~ (n,0)— f(n,l), 6(n,l)
=[2f'(n.)f(n.)~1], and

XY-interaction term to
=—6*(n,l).

We now can construct a general spin model in two dimen-
sions for which the particular transform Eq. (7) directly ap-
plies. Let us reiterate that by “applies,” we mean that the
resulting fermion Hamiltonian does not contain the 7 opera-
tors or any phase factors arising from Jordan-Wigner strings.
Otherwise, the transform Eq. (7) as well as Eq. (1) always
apply in the sense that they produce the fermion operators
using the spin operators available. Let us write down the
following rather general Hamiltonian associated with a
square lattice

change the sign of the
account for &*(n,l)6%(n,l)
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FIG. 1. (Color online) Displayed is a square lattice associated
with the general spin model (9) and also shown are allowed and
forbidden cycles on the lattice (depicted as loops with solid and
dashed outlines correspondingly). Each loop represents a spin inter-
action term in the Hamiltonian, which involves a product of L
6*(r) operators, where L is the number of sites in the loop, C;.
Shown here are some examples: (i) C, corresponds to a nearest-
neighbor XY coupling; (ii) C4 is associated with ring-exchange
terms such as in Eq. (11), etc.

H=hJ{6H+ 2 [6%0,0 op(n, 6P (n + 1,0)]
n,l

+ X S el 64O) + He.

CCEven loops {a(r)==*} reC

)

and decipher the meaning of each term in Eq. (9). The first
term is an arbitrary function of G operators on each site. The
second term describes a collection of decoupled spin chains
with arbitrary nearest-neighbor interactions within each
chain. Note that a “chain” does not necessarily have to be an
actual row or column of a lattice, these legs may be formed
by any one-dimensional paths, as long as the collection of
these paths covers the entire lattice and no two paths inter-
sect. The last term includes all “allowed” interactions that
involve two or more different chains (apart from those inter-
actions, which may already be present in /). The indices
a(r)==* there label either lowering or raising operators,
which may in principle appear in any combination, if no
global spin conservation is imposed (no number
conservation/gauge invariance for the fermions). Finally, C in
Eq. (9) denotes a closed path, or a one cycle, on a lattice:
C,={r,—r,—r;—---—r.}, where, r;, represents a lattice
site and |r;,;—r;|=|r,—r;|=0 or 1. The label “even loops” in
the sum correspond to the cycles that satisfy the following
two constraints: (i) each even cycle has an even number of
sites present from each leg and (i) For any site
r=(n,l) e C lying in the path, there exists a r'=(n',l) eC
from the same leg, which is either the same site (n' =n) or its
nearest neighbor (n=n'* 1). We note that including the first
two terms in Egs. (9) along with the general third term is in
fact redundant because the 6<(r) terms can be associated
with C.={r —r} cycles (see, Fig. 1) and the nearest-neighbor
XY interactions with C,={r—r=*e,}. The purpose of all
these complicated constraints is simple: we want to avoid
both 7 operators in the resulting Hamiltonian [recall that
(#7)*"=1 hence the choice of even cycles] and any phase
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factors that could arise from the Jordan-Wigner string
(hence, we eliminate the non-nearest-neighbor interactions
within legs’). A general Hamiltonian (9) satisfies all these
conditions and can be fermionized via the proposed trans-
form in Eq. (7). Figure 1 illustrates the imposed constraints
more clearly. The solid-line loops there are examples of al-
lowed paths while the dashed-line loops provide examples of
interaction terms, which are “not allowed.” Let us note that
there may be a simple physical explanation why a Hamil-

tonian with terms of type Cy probably cannot be fermionized
via this method, which utilizes auxiliary spins: The loop en-
circles a site that does not belong to it [(n=8, [=6) in
Fig. 1] and this site may or may not contain a fermion, which
leads to an ambiguity in the phase factors. Hence, the choice
of statistics matters in this case while for Hamiltonian (9) it
may become largely a question of convenience (cf., Ref. 10).

We can generalize this scheme further by considering
more complicated long-range intrachain interactions and
various lattice structures including three-dimensional and
higher-dimensional lattices (which too can be conveniently
fermionized using this method as long as the interaction
terms respect the constraints, i.e., belong to the allowed one-
and higher-dimensional cycles). However, instead of gener-
alizing Hamiltonian (9), let us on the contrary focus on the
following specific realization of it, which involves very in-
teresting ring-exchange terms (associated with loops of type
C, in Fig. 1)

He= > {[J,64(r)67(r +e,) + He.] - B&(r)} + H. + Ha,

rez?

(10)
where 7:lZ=JZEr[6~’(r)6l(r+ey)+H.c.], cf. Eq. (4), and

7:(4 = K4E ' (r)6 (r+e)6"(r+e.,+e)d (r+e)+H.c.

(11)

is a ring-exchange term. Our method immediately gives the
fermionized version of Eq. (10) in the form of an array of
Luttinger liquids coupled via density-density and current-
current interactions. It is known that such a model hosts a
variety of unusual phases, including so-called sliding Lut-
tinger liquids.''=!® This immediately implies that the under-
lying two-dimensional quantum spin model too remains a
spin liquid (that can be dubbed a “Luttinger spin liquid”) in
the corresponding parameter range. Note that Eq. (10) is
closely related to the model proposed earlier by
Paramekanti et al,'* as a realization of a spin/Bose
liquid. Indeed, the rotor Hamiltonian of Ref. 14,
H=UEr(ﬁr—ﬁ)z—KErcos(Ax}ﬁ)r), reduces in the hardcore-
boson limit to a spin-(1/2) model of type Eq. (10) with in-
terchain hopping terms absent (i.e., J;=0). Since the latter
model can be fermionized as shown, the appearance of a
liquid phase predicted in Ref. 14 is quite natural. Let us also
note that model (10) is related to a Bose-metal phase
introduced by Motrunich and Fisher.”> The proposed

spin/Bose-metal Hamiltonian is of the following type Hgym
=J2 oy O (1) é'(r’)+7:[4, where (r,r’) corresponds to near-
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est neighbors on a square lattice or a spin ladder.!>'® How-
ever, the presence of two-dimensional XY couplings in the
generic Bose-metal Hamiltonian does not allow us to use the
fermionization transform in Eq. (7).

Let us note that Jordan-Wigner-type fermionization with
or without external operators, when applied to two- and
higher-dimensional isotropic XY models would produce a
gauge theory for the fermions as opposed to a simple inter-
acting theory, such as in Eq. (5). However, there may exist an
alternative way to fermionize the XY model in terms of BCS
fermions with spin instead of spinless Jordan-Wigner fermi-
ons. It is known that the partition function of the Richardson
model!”!® of interacting fermions with the Hamiltonian,
Hr=Sr gt Belh Cost e (0, 0)E] 6L 600 (6 can be
mapped onto a combination partition functions,
ZR=2(ZSpin><Zg_Spin), of real spins on singly occupied sites
and Anderson'” pseudospins on paired/empty sites, with
Z_pin associated with an XY model for Anderson pseu-
dospins, ﬂXYzEr,,J(r,r’)[&:&;+H.c.]. Hence, by adding
to Richardson Hamiltonian nonlinear terms that eliminate
single occupancy, we can suppress the real-spin-sector and
thereby fermionize the remaining XY model associated with
the pseudospins.

The general proposed scheme of using external operators
to build a fermionized version of a spin model does not
necessarily need to involve the particular transform Eq. (7),
which should be viewed as merely an example. Furthermore,
there always exist multiple different parameterizations or
numberings of both the external operators and “internal”
Jordan-Wigner-type strings that give rise to the same Hamil-
tonian and associated partition function (modulo an overall
constant). To provide a final example in this context, let us
consider a three-leg spin ladder, forming a triangular lattice,
see Fig. 2. To fermionize this model, we in addition to trans-
form Eq. (7), can use, e.g., the following fermion operators,

Fr(m)=6"*(n, D)I0,,,[6(m,1)]#, where [=1,2,3=x,y,z is
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/=3

=1

FIG. 2. (Color online) An example of a three-leg spin ladder,
which can be fermionized using a transform that involves just one
external spin operator (see text for details) in contrast to Eq. (7).

the leg index. Hence, we can fermionize this three-leg ladder
using just one auxiliary spin, 7. However, whether or not this
particular parameterization is useful depends on a Hamil-
tonian of interest. If only nearest-leg ring exchanges are in-
cluded, this transform leads to a proper fermion Hamiltonian,
which does not involve the external spin. However, the in-
clusion of center-of-mass conserving ring exchanges that in-
volve all three legs (such as present in the models discussed
in Refs. 20 and 21) would lead to the appearance of
7-“gauge” factors in the fermion Hamiltonian.

Finally, we note that the fact that the proposed transform
works only for a very restricted class of models reflects the
fact that the number of quantum spin models, whose parti-
tion function is proportional to that of a fermion model is
limited. However, there exist larger classes of spin models
whose partition function is expressible as a linear combina-
tion or a series of fermionic partition functions. A very prom-
ising approach to analyze these models is to allow auxiliary
particles that are not s1(2) spins but are described by repre-
sentations of other (arbitrary auxiliary algebras), which may
be used in conjunction with physical spins to build fermionic
representations. Examples of the use of this generalized ap-
proach will be presented elsewhere.
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